Assalamualaikum Wr Wb

Pages

Minggu, 14 Agustus 2011

Mengenal Jaringan

1. Apa itu Jaringan Komputer?
JARINGAN komputer adalah sebuah kumpulan komputer, printer dan peralatan lainnya
yang terhubung dalam satu kesatuan. Informasi dan data bergerak melalui kabel-kabel
atau tanpa kabel sehingga memungkinkan pengguna jaringan komputer dapat saling
bertukar dokumen dan data, mencetak pada printer yang sama dan bersama-sama
menggunakan hardware/software yang terhubung dengan jaringan. Setiap komputer,
printer atau periferal yang terhubung dengan jaringan disebut node. Sebuah jaringan
komputer dapat memiliki dua, puluhan, ribuan atau bahkan jutaan node.
2. Jenis - jenis Jaringan Komputer
Secara umum jaringan komputer dibagi atas lima jenis, yaitu ;
  1. Local Area Network (LAN)
    Local Area Network (LAN), merupakan jaringan milik pribadi di dalam sebuah gedung
    atau kampus yang berukuran sampai beberapa kilometer. LAN seringkali digunakan
    untuk menghubungkan komputer-komputer pribadi dan workstation dalam kantor
    suatu perusahaan atau pabrik-pabrik untuk memakai bersama sumberdaya (resouce,
    misalnya printer) dan saling bertukar informasi.
  2. Metropolitan Area Network (MAN)
    Metropolitan Area Network (MAN), pada dasarnya merupakan versi LAN yang
    berukuran lebih besar dan biasanya menggunakan teknologi yang sama dengan LAN.
    MAN dapat mencakup kantor-kantor perusahaan yang letaknya berdekatan atau juga
    sebuah kota dan dapat dimanfaatkan untuk keperluan pribadi (swasta) atau umum.
    MAN mampu menunjang data dan suara, bahkan dapat berhubungan dengan jaringan
    televisi kabel.
  3. Wide Area Network (WAN)
    Wide Area Network (WAN), jangkauannya mencakup daerah geografis yang luas,
    seringkali mencakup sebuah negara bahkan benua. WAN terdiri dari kumpulan mesinmesin
    yang bertujuan untuk menjalankan program-program (aplikasi) pemakai.
  4. Internet
    Sebenarnya terdapat banyak jaringan didunia ini, seringkali menggunakan perangkat
    keras dan perangkat lunak yang berbeda-beda . Orang yang terhubung ke jaringan
    sering berharap untuk bisa berkomunikasi dengan orang lain yang terhubung ke
    jaringan lainnya. Keinginan seperti ini memerlukan hubungan antar jaringan yang
    seringkali tidak kampatibel dan berbeda. Biasanya untuk melakukan hal ini diperlukan
    sebuah mesin yang disebut gateway guna melakukan hubungan dan melaksanakan
    terjemahan yang diperlukan, baik perangkat keras maupun perangkat lunaknya.
    Kumpulan jaringan yang terinterkoneksi inilah yang disebut dengan internet.
  5. Jaringan Tanpa Kabel
    Jaringan tanpa kabel merupakan suatu solusi terhadap komukasi yang tidak bisa
    dilakukan dengan jaringan yang menggunakan kabel. Misalnya orang yang ingin
    mendapat informasi atau melakukan komunikasi walaupun sedang berada diatas mobil atau pesawat terbang, maka mutlak jaringan tanpa kabel diperlukan karena
    koneksi kabel tidaklah mungkin dibuat di dalam mobil atau pesawat. Saat ini jaringan
    tanpa kabel sudah marak digunakan dengan memanfaatkan jasa satelit dan mampu
    memberikan kecepatan akses yang lebih cepat dibandingkan dengan jaringan yang
    menggunakan kabel.
3. Topologi Jaringan Komputer
Topologi adalah suatu cara menghubungkan komputer yang satu dengan komputer
lainnya sehingga membentuk jaringan. Cara yang saat ini banyak digunakan adalah bus,
token-ring, star dan peer-to-peer network. Masing-masing topologi ini mempunyai ciri khas,
dengan kelebihan dan kekurangannya sendiri.
  1. Topologi BUS
    Pada topologi bus digunakan sebuah kabel tunggal dimana client & server dihubungkan.
    Keuntungan :
  2. Hemat Kabel
  3. Lay out kabel sederhana
  4. Pengembangan jaringan dapat dikembangkan lebih mudah Kerugian :
  5. Isolasi Kesalahan sangat kecil
  6. Kepadatan Lalu Lintas pada jalur utama
  7. diperlukan repeater pada jarak jauh
  8. Topologi Token Ring
    Metode token-ring (sering disebut ring saja) adalah cara menghubungkan komputer
    sehingga berbentuk ring (lingkaran). Setiap simpul mempunyai tingkatan yang sama.
    Jaringan akan disebut sebagai loop, data dikirimkan kesetiap simpul dan setiap
    informasi yang diterima simpul diperiksa alamatnya apakah data itu untuknya atau
    bukan.
    Keuntungan :
  9. Hemat Kabel
    Kerugian :
  10. Peka Kesalahan
  11. Pengembangan Jaringan lebih kaku
  12. Topologi Star
    Kontrol terpusat, semua link harus melewati pusat yang menyalurkan data tersebut
    kesemua simpul atau client yang dipilihnya. Simpul pusat dinamakan stasium primer
    atau server dan lainnya dinamakan stasiun sekunder atau client server. Setelah
    hubungan jaringan dimulai oleh server maka setiap client server sewaktu-waktu dapat
    menggunakan hubungan jaringan tersebut tanpa menunggu perintah dari server.
    Keuntungan :
  13. Paling Fleksibel
  14. Pemasangan/perubahan stasiun sangat mudah dan tidak mengganggu bagian jaringan lain
  15. Kontrol Terpusat
  16. Kemudahan deteksi dan isolasi kesalahan/kerusakan
  17. Kemudahan pengelolaan jaringan
  18. Kontrol Terpusat
    Kerugian :
  19. Boros Kabel
  20. Perlu penanganan khusus
  21. Topologi MESH
    Merupakan pengembangan dari Topolgi RING untuk mengatasi panjangnya perjalanan data
  22. Topologi Tree
    Merupakan pengembangan dari Topolgi Bus, sehingga memungkinkan penambahan client secara mudah
Peer to Peer Network
Peer artinya rekan sekerja. Peer-to-peer network adalah jaringan komputer yang
terdiri dari beberapa komputer (biasanya tidak lebih dari 10 komputer dengan 1-2
printer). Dalam sistem jaringan ini yang diutamakan adalah penggunaan program,
data dan printer secara bersama-sama. Pemakai komputer bernama Dona dapat
memakai program yang dipasang di komputer Dino, dan mereka berdua dapat
mencetak ke printer yang sama pada saat yang bersamaan.
Sistem jaringan ini juga dapat dipakai di rumah. Pemakai komputer yang memiliki
komputer ‘kuno’, misalnya AT, dan ingin memberli komputer baru, katakanlah Pentium
II, tidak perlu membuang komputer lamanya. Ia cukup memasang netword card di
kedua komputernya kemudian dihubungkan dengan kabel yang khusus digunakan
untuk sistem jaringan. Dibandingkan dengan ketiga cara diatas, sistem jaringan ini
lebih sederhana sehingga lebih mudah dipejari dan dipakai.
Keunggulan :

  • antar komputer dapat saling berbagi fasilitas

  • Biaya operasional lebih murah

  • Kelangsungan tidk tergantung pada satu server
    Kelemahan :

  • Troubleshooting jaringan lebih sulit

  • Unjuk kerja lebih rendah

  • Sistem keamanan jaringan ditentukan oleh masing - masing user

  • Back up data lebih sulit karena tersebar di masing - masing komputer
    Manfaat jaringan Komputer

  • Resource Sharing, dapat menggunakan sumber daya yang
    ada secara bersama-sama. Misal seorang pengguna yang berada 100 km jauhnya dari suatu data,
    tidak mendapatkan kesulitan dalam menggunakan data tersebut, seolah - olah data tersebut berada di dekatnya.
    Hal ini sering diartikan bahwa jaringan komputer mengatasi masalah jarak.

  • Reliabilitas Tinggi,dengan jaringan komputer kita akan mendapatkan reliabilitas yang
    tinggi dengan memiliki sumber-sumber lternatif persediaan. Misalnya, semua file dapat disimpan
    atau di copy ke dua, tiga, atau lebih komputer yang terkoneksi ke jaringan. sehingga
    bila salah satu mesin rusak, maka salinan di mesin yang lain bisa digunakan.

  • Menghemat Uang,Komputer berukutan kecil mempunyai rasio harga/kinerja yang
    lebih baik dibandingkan dengan komputer yang besar. Komputer besar seperti
    mainframe memiliki kecapatan kira-kira sepuluh kali lipat kecepatan komputer
    kecil/pribadi. Akan tetap, harga mainframe seribu kali lebih mahal dari komputer
    pribadi. Ketidakseimbangan rasio harga/kinerja dan kecepatan inilah membuat
    para perancang sistem untuk membangun sistem yang terdiri dari komputerkomputer
    pribadi

  • Input/Output with files

    C++ provides the following classes to perform output and input of characters to/from files:


    • ofstream: Stream class to write on files
    • ifstream: Stream class to read from files
    • fstream: Stream class to both read and write from/to files.

    These classes are derived directly or indirectly from the classes istream, and ostream. We have already used objects whose types were these classes: cin is an object of class istream and cout is an object of class ostream. Therfore, we have already been using classes that are related to our file streams. And in fact, we can use our file streams the same way we are already used to use cin and cout, with the only difference that we have to associate these streams with physical files. Let's see an example:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    // basic file operations
    #include <iostream>
    #include <fstream>
    using namespace std;
    
    int main () {
      ofstream myfile;
      myfile.open ("example.txt");
      myfile << "Writing this to a file.\n";
      myfile.close();
      return 0;
    }
    [file example.txt]
    Writing this to a file.


    This code creates a file called example.txt and inserts a sentence into it in the same way we are used to do with cout, but using the file stream myfile instead.

    But let's go step by step:

    Open a file


    The first operation generally performed on an object of one of these classes is to associate it to a real file. This procedure is known as to open a file. An open file is represented within a program by a stream object (an instantiation of one of these classes, in the previous example this was myfile) and any input or output operation performed on this stream object will be applied to the physical file associated to it.

    In order to open a file with a stream object we use its member function open():

    open (filename, mode);

    Where filename is a null-terminated character sequence of type const char * (the same type that string literals have) representing the name of the file to be opened, and mode is an optional parameter with a combination of the following flags:

    ios::inOpen for input operations.
    ios::outOpen for output operations.
    ios::binaryOpen in binary mode.
    ios::ateSet the initial position at the end of the file.
    If this flag is not set to any value, the initial position is the beginning of the file.
    ios::appAll output operations are performed at the end of the file, appending the content to the current content of the file. This flag can only be used in streams open for output-only operations.
    ios::truncIf the file opened for output operations already existed before, its previous content is deleted and replaced by the new one.

    All these flags can be combined using the bitwise operator OR (|). For example, if we want to open the file example.bin in binary mode to add data we could do it by the following call to member function open():

    1
    2
    ofstream myfile;
    myfile.open ("example.bin", ios::out | ios::app | ios::binary); 


    Each one of the open() member functions of the classes ofstream, ifstream and fstream has a default mode that is used if the file is opened without a second argument:

    classdefault mode parameter
    ofstreamios::out
    ifstreamios::in
    fstreamios::in | ios::out

    For ifstream and ofstream classes, ios::in and ios::out are automatically and respectively assumed, even if a mode that does not include them is passed as second argument to the open() member function.

    The default value is only applied if the function is called without specifying any value for the mode parameter. If the function is called with any value in that parameter the default mode is overridden, not combined.

    File streams opened in binary mode perform input and output operations independently of any format considerations. Non-binary files are known as text files, and some translations may occur due to formatting of some special characters (like newline and carriage return characters).

    Since the first task that is performed on a file stream object is generally to open a file, these three classes include a constructor that automatically calls the open() member function and has the exact same parameters as this member. Therefore, we could also have declared the previous myfile object and conducted the same opening operation in our previous example by writing:

     
    ofstream myfile ("example.bin", ios::out | ios::app | ios::binary);


    Combining object construction and stream opening in a single statement. Both forms to open a file are valid and equivalent.

    To check if a file stream was successful opening a file, you can do it by calling to member is_open() with no arguments. This member function returns a bool value of true in the case that indeed the stream object is associated with an open file, or false otherwise:

     
    if (myfile.is_open()) { /* ok, proceed with output */ }


    Closing a file

    When we are finished with our input and output operations on a file we shall close it so that its resources become available again. In order to do that we have to call the stream's member function close(). This member function takes no parameters, and what it does is to flush the associated buffers and close the file:

     
    myfile.close();


    Once this member function is called, the stream object can be used to open another file, and the file is available again to be opened by other processes.

    In case that an object is destructed while still associated with an open file, the destructor automatically calls the member function close().

    Text files

    Text file streams are those where we do not include the ios::binary flag in their opening mode. These files are designed to store text and thus all values that we input or output from/to them can suffer some formatting transformations, which do not necessarily correspond to their literal binary value.

    Data output operations on text files are performed in the same way we operated with cout:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    // writing on a text file
    #include <iostream>
    #include <fstream>
    using namespace std;
    
    int main () {
      ofstream myfile ("example.txt");
      if (myfile.is_open())
      {
        myfile << "This is a line.\n";
        myfile << "This is another line.\n";
        myfile.close();
      }
      else cout << "Unable to open file";
      return 0;
    }
    [file example.txt]
    This is a line.
    This is another line.


    Data input from a file can also be performed in the same way that we did with cin:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    // reading a text file
    #include <iostream>
    #include <fstream>
    #include <string>
    using namespace std;
    
    int main () {
      string line;
      ifstream myfile ("example.txt");
      if (myfile.is_open())
      {
        while ( myfile.good() )
        {
          getline (myfile,line);
          cout << line << endl;
        }
        myfile.close();
      }
    
      else cout << "Unable to open file"; 
    
      return 0;
    }
    This is a line.
    This is another line.  


    This last example reads a text file and prints out its content on the screen. Notice how we have used a new member function, called good() that returns true in the case that the stream is ready for input/output operations. We have created a while loop that finishes when indeed myfile.good() is no longer true, which will happen either if the end of the file has been reached or if some other error occurred.

    Checking state flags

    In addition to good(), which checks whether the stream is ready for input/output operations, other member functions exist to check for specific states of a stream (all of them return a bool value):

    bad()
    Returns true if a reading or writing operation fails. For example in the case that we try to write to a file that is not open for writing or if the device where we try to write has no space left.
    fail()
    Returns true in the same cases as bad(), but also in the case that a format error happens, like when an alphabetical character is extracted when we are trying to read an integer number.
    eof()
    Returns true if a file open for reading has reached the end.
    good()
    It is the most generic state flag: it returns false in the same cases in which calling any of the previous functions would return true.

    In order to reset the state flags checked by any of these member functions we have just seen we can use the member function clear(), which takes no parameters.

    get and put stream pointers

    All i/o streams objects have, at least, one internal stream pointer:

    ifstream, like istream, has a pointer known as the get pointer that points to the element to be read in the next input operation.

    ofstream, like ostream, has a pointer known as the put pointer that points to the location where the next element has to be written.

    Finally, fstream, inherits both, the get and the put pointers, from iostream (which is itself derived from both istream and ostream).

    These internal stream pointers that point to the reading or writing locations within a stream can be manipulated using the following member functions:

    tellg() and tellp()

    These two member functions have no parameters and return a value of the member type pos_type, which is an integer data type representing the current position of the get stream pointer (in the case of tellg) or the put stream pointer (in the case of tellp).

    seekg() and seekp()

    These functions allow us to change the position of the get and put stream pointers. Both functions are overloaded with two different prototypes. The first prototype is:

    seekg ( position );
    seekp ( position );

    Using this prototype the stream pointer is changed to the absolute position position (counting from the beginning of the file). The type for this parameter is the same as the one returned by functions tellg and tellp: the member type pos_type, which is an integer value.

    The other prototype for these functions is:

    seekg ( offset, direction );
    seekp ( offset, direction );

    Using this prototype, the position of the get or put pointer is set to an offset value relative to some specific point determined by the parameter direction. offset is of the member type off_type, which is also an integer type. And direction is of type seekdir, which is an enumerated type (enum) that determines the point from where offset is counted from, and that can take any of the following values:

    ios::begoffset counted from the beginning of the stream
    ios::curoffset counted from the current position of the stream pointer
    ios::endoffset counted from the end of the stream

    The following example uses the member functions we have just seen to obtain the size of a file:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    // obtaining file size
    #include <iostream>
    #include <fstream>
    using namespace std;
    
    int main () {
      long begin,end;
      ifstream myfile ("example.txt");
      begin = myfile.tellg();
      myfile.seekg (0, ios::end);
      end = myfile.tellg();
      myfile.close();
      cout << "size is: " << (end-begin) << " bytes.\n";
      return 0;
    }
    size is: 40 bytes.


    Binary files

    In binary files, to input and output data with the extraction and insertion operators (<< and >>) and functions like getline is not efficient, since we do not need to format any data, and data may not use the separation codes used by text files to separate elements (like space, newline, etc...).

    File streams include two member functions specifically designed to input and output binary data sequentially: write and read. The first one (write) is a member function of ostream inherited by ofstream. And read is a member function of istream that is inherited by ifstream. Objects of class fstream have both members. Their prototypes are:

    write ( memory_block, size );
    read ( memory_block, size );

    Where memory_block is of type "pointer to char" (char*), and represents the address of an array of bytes where the read data elements are stored or from where the data elements to be written are taken. The size parameter is an integer value that specifies the number of characters to be read or written from/to the memory block.

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    // reading a complete binary file
    #include <iostream>
    #include <fstream>
    using namespace std;
    
    ifstream::pos_type size;
    char * memblock;
    
    int main () {
      ifstream file ("example.bin", ios::in|ios::binary|ios::ate);
      if (file.is_open())
      {
        size = file.tellg();
        memblock = new char [size];
        file.seekg (0, ios::beg);
        file.read (memblock, size);
        file.close();
    
        cout << "the complete file content is in memory";
    
        delete[] memblock;
      }
      else cout << "Unable to open file";
      return 0;
    }
    the complete file content is in memory


    In this example the entire file is read and stored in a memory block. Let's examine how this is done:

    First, the file is open with the ios::ate flag, which means that the get pointer will be positioned at the end of the file. This way, when we call to member tellg(), we will directly obtain the size of the file. Notice the type we have used to declare variable size:

     
    ifstream::pos_type size;


    ifstream::pos_type is a specific type used for buffer and file positioning and is the type returned by file.tellg(). This type is defined as an integer type, therefore we can conduct on it the same operations we conduct on any other integer value, and can safely be converted to another integer type large enough to contain the size of the file. For a file with a size under 2GB we could use int:

    1
    2
    int size;
    size = (int) file.tellg();


    Once we have obtained the size of the file, we request the allocation of a memory block large enough to hold the entire file:

     
    memblock = new char[size];


    Right after that, we proceed to set the get pointer at the beginning of the file (remember that we opened the file with this pointer at the end), then read the entire file, and finally close it:

    1
    2
    3
    file.seekg (0, ios::beg);
    file.read (memblock, size);
    file.close();


    At this point we could operate with the data obtained from the file. Our program simply announces that the content of the file is in memory and then terminates.

    Buffers and Synchronization


    When we operate with file streams, these are associated to an internal buffer of type streambuf. This buffer is a memory block that acts as an intermediary between the stream and the physical file. For example, with an ofstream, each time the member function put (which writes a single character) is called, the character is not written directly to the physical file with which the stream is associated. Instead of that, the character is inserted in that stream's intermediate buffer.

    When the buffer is flushed, all the data contained in it is written to the physical medium (if it is an output stream) or simply freed (if it is an input stream). This process is called synchronization and takes place under any of the following circumstances:

    • When the file is closed: before closing a file all buffers that have not yet been flushed are synchronized and all pending data is written or read to the physical medium.
    • When the buffer is full: Buffers have a certain size. When the buffer is full it is automatically synchronized.
    • Explicitly, with manipulators: When certain manipulators are used on streams, an explicit synchronization takes place. These manipulators are: flush and endl.
    • Explicitly, with member function sync(): Calling stream's member function sync(), which takes no parameters, causes an immediate synchronization. This function returns an int value equal to -1 if the stream has no associated buffer or in case of failure. Otherwise (if the stream buffer was successfully synchronized) it returns 0